9.1 Stability and the phase plane

Vocabulary we already know:
e phase plane, direction field, slope field
e phase portrait of a 2-dimensional

autonomous system = 7, equedion A8l thonge tktimg .

e solution curve = trajectory | b . 2 wl’ls@om
e critical point, equilibrium solution ﬁﬁ‘z ﬁ&dm«a)
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Vocabulary that is new:

stable, asymptotically stable
unstable

e node (proper, improper)

e sink source

e spiral sink = stable spiral point

e spiral source = unstable spiral point

e stable center i = . _
e saddle point D uns‘faue T ,dvib({, h
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Page 512 question 9 (differently worded, plus a
bit, on the HW but not to be handed in)

In the equation x” + 4x - xA3 =0 put

X' =y, y =x"3 -4x

and use a computer system or graphing
calculator to construct a phase portrait and
direction field. Find the critical points and
classify them as sink, source, saddle point, spiral

point, stable center, going by what they look
like.
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Pre-clage Warm-up!!!

e The system of equations x’ = Ax where
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has general solution (ﬁ‘“ C m@ e L ,]6

(because A has eigenvalues A=2 , 79

and eigenvectors /J 1( )
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What is the correct phase portrait for this system?
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Another question: is it easier to draw the
phase portrait knowing

a. the original equations, or

b. the solutions to the system.

Yet another question: what is the difference
between a phase portrait and a direction

field?
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Types of critical point. Critical points may be

Stable  Sufficlently dote 1o 4z cntical
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not stable

Unstable =

Asymptotically stable (implies stable)
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Examples of the form x" = Ax.
The critical point is at the origin.
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Separately from whether a critical point is
stable or unstable, it can be a

e node, which can be proper or improper,
e asaddle point,

e aspiral point, or

® a center

A node is a critical point so that

e either every trajectory approaches it or every
trajectory recedes from it, and

e every trajectory is tangent to some straight line
through the critical point.

The node is proper if all the tangent lines are
distinct.

A node or a spiral point can be a source or a
sink, depending on its stability.

Examples from the last page: x’ = Ax with a
critical point at the origin.
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Question: for each of 1, 2, 3,
is it a node, or not a node?




o = [l
Example: x" = Ax where A—[o lj
Eigenvalues: A= [ | only one eigenvector (:O]
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We can check that every trajectory is tangent
to the x-axis as it approaches the origin,
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Question: Is it

a. stable

b. unstable v/



Spiral points

A critical point where the trajectories wind round
and round, and either approach the critical point
or leave it, is called a spiral.

If the trajectories wind round and round and are
closed, the critical point is called a center.
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s the critical point

a. stable?

b. unstable?

c. asymptotically stable?
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Typical question, like questions 13-20:

The system of equations given below has a

critical point when (x,y) = (0,0). Classify this

critical point, determining whether it is

e stable, asymptotically stable or unstable, and

e a proper node, an improper node, a spiral
point, a saddle point or a stable center.
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Stable

As. stable

Unstable

Proper node

Improper node

Source

Sink

Spiral point

Saddle point
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